Facultad de Ingeniería Mecánica y Eléctrica
Bienvenido
Esta página te ayudara con el curso de "Física Moderna" de la Facultad de Ingeniería Mecánica y Eléctrica.
Encontraras El temario, problemas y las prácticas de laboratorio de este curso, como tambien los libros a utilzar.



miércoles, 23 de mayo de 2012

Dilatación del tiempo


Dilatación del tiempo y contracción de la longitud


el tiempo en esta teoría deja de ser absoluto como se proponía en la mecánica clásica. O sea, el tiempo para todos los observadores del fenómeno deja de ser el mismo. Si tenemos un observador inmóvil haciendo una medición del tiempo de un acontecimiento y otro que se mueva a velocidades relativistas, los dos relojes no tendrán la misma medición de tiempo.

Si se dice que el tiempo varía a velocidades relativistas, la longitud también lo hace. Un ejemplo sería si tenemos a dos observadores inicialmente inmóviles, éstos miden un vehículo en el cual solo uno de ellos "viajará" a grandes velocidades, ambos obtendrán el mismo resultado. Uno de ellos entra al vehículo y cuando adquiera la suficiente velocidad mide el vehículo obteniendo el resultado esperado, pero si el que esta inmóvil lo vuelve a medir, obtendrá un valor menor. Esto se debe a que la longitud también se contrae..


Cantidades relativistas


         Composición de velocidades
La composición de velocidades es el cambio en la velocidad de un cuerpo al ser medida en diferentes sistemas de referencia inerciales. En la física pre-relativista se calculaba mediante

Donde v′ es la velocidad del cuerpo con respecto al sistema S′, u la velocidad con la que este sistema se aleja del sistema "en reposo" S, y v es la velocidad del cuerpo medida en S.

Sin embargo, debido a las modificaciones del espacio y el tiempo, esta relación no es válida en Relatividad Especial. Mediante las transformadas de Lorentzpuede obtenerse la fórmula correcta:

Al observar con cuidado esta fórmula se nota que si tomamos para el cuerpo una velocidad en el sistema S igual a la de la luz (el caso de un fotón, por ejemplo), su velocidad en S′ sigue siendo v′=c, como se espera debido al segundo postulado. Además, si las velocidades son muy pequeñas en comparación con la luz, se obtiene que esta fórmula se aproxima a la anterior dada por Galileo.

Masa, momento y Energía Relativista


El concepto de masa en la teoría de la relatividad especial tiene dos bifurcaciones: la masa invariante y la masa relativista aparente. La masa relativista aparente es la masa aparente que va a depender del observador y se puede incrementar dependiendo de su velocidad, mientras que la invariante es independiente del observador e invariante.            
    Matemáticamente tenemos que:  donde es la masa relativista aparente,  es la invariante y  es el factor de Lorentz. Notemos que si lavelocidad relativa del factor de Lorentz es muy baja, la masa relativa tiene el mismo valor que la masa invariante pero si ésta es comparable con la velocidad de la luz existe una variación entre ambas. Conforme la velocidad se vaya aproximando a la velocidad de la luz, la masa relativista tenderá a infinito.

No hay comentarios:

Publicar un comentario